Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Abstract A technique has recently been developed for tracking short-term spectral variations in Galactic cosmic rays (GCRs) using data from a single neutron monitor (NM), by collecting histograms of the time delay between successive neutron counts and extracting the leader fractionLas a proxy of the spectral index. Here we analyzeLfrom four Antarctic NMs from 2015 March to 2023 September. We have calibratedLfrom the South Pole NM with respect to a daily spectral index determined from published data of GCR proton fluxes during 2015–2019 from the Alpha Magnetic Spectrometer (AMS-02) on board the International Space Station. Our results demonstrate a robust correlation between the leader fraction and the spectral index fit over the rigidity range 2.97–16.6 GV for AMS-02 data, with uncertainty of 0.018 in the daily spectral index as inferred fromL. In addition to the 11 yr solar activity cycle, a wavelet analysis confirms a 27 day periodicity in the GCR flux and spectral index corresponding to solar rotation, especially near sunspot minimum, while the flux occasionally exhibits a strong harmonic at 13.5 days. The magnetic field component along a nominal Parker spiral (i.e., the magnetic sector structure) is a strong determinant of such spectral and flux variations, with the solar wind speed exerting an additional, nearly rigidity-independent influence on flux variations. Our investigation affirms the capability of ground-based NM stations to accurately and continuously monitor cosmic-ray spectral variations over the long-term future.more » « less
- 
            Unknown (Ed.)We review the status of the US neutron monitor network, the science activities that utilize the network, the long-standing and permanent need for the network, its key role in the national Space Weather Strategy, future scientific and space weather activities and objectives and, lastly, plans for expanding the public profile and improving the security and scientific function of the networkmore » « less
- 
            Abstract. The IceCube Neutrino Observatory instruments about 1 km3 of deep, glacial ice at the geographic South Pole. It uses 5160 photomultipliers to detect Cherenkov light emitted by charged relativistic particles. An unexpected light propagation effect observed by the experiment is an anisotropic attenuation, which is aligned with the local flow direction of the ice. We examine birefringent light propagation through the polycrystalline ice microstructure as a possible explanation for this effect. The predictions of a first-principles model developed for this purpose, in particular curved light trajectories resulting from asymmetric diffusion, provide a qualitatively good match to the main features of the data. This in turn allows us to deduce ice crystal properties. Since the wavelength of the detected light is short compared to the crystal size, these crystal properties include not only the crystal orientation fabric, but also the average crystal size and shape, as a function of depth. By adding small empirical corrections to this first-principles model, a quantitatively accurate description of the optical properties of the IceCube glacial ice is obtained. In this paper, we present the experimental signature of ice optical anisotropy observed in IceCube light-emitting diode (LED) calibration data, the theory and parameterization of the birefringence effect, the fitting procedures of these parameterizations to experimental data, and the inferred crystal properties.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
